A Memetic Pareto Evolutionary Approach to Artificial Neural Networks

نویسنده

  • Hussein A. Abbass
چکیده

Evolutionary Artificial Neural Networks (EANN) have been a focus of research in the areas of Evolutionary Algorithms (EA) and Artificial Neural Networks (ANN) for the last decade. In this paper, we present an EANN approach based on pareto multi-objective optimization and differential evolution augmented with local search. We call the approach Memetic Pareto Artificial Neural Networks (MPANN). We show empirically that MPANN is capable to overcome the slow training of traditional EANN with equivalent or better generalization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Memetic pareto differential evolutionary artificial neural networks to determine growth multi-classes in predictive microbiology

The main objective of this research is to automatically design Artificial Neural Network models with sigmoid basis units for multiclassification tasks in predictive microbiology. The classifiers obtained achieve a double objective: a high classification level in the dataset and high classification levels for each class. The Memetic Pareto Differential Evolution Neural Network chosen to learn th...

متن کامل

Memetic Pareto Evolutionary Artificial Neural Networks to determine growth/no-growth in predictive microbiology

The main objective of this work is to automatically design neural network models with sigmoid basis units for binary classification tasks. The classifiers that are obtained achieve a double objective: a high classification level in the dataset and a high classification level for each class. We present MPENSGA2, a Memetic Pareto Evolutionary approach based on the NSGA2 multiobjective evolutionar...

متن کامل

Speeding Up Backpropagation Using Multiobjective Evolutionary Algorithms

The use of backpropagation for training artificial neural networks (ANNs) is usually associated with a long training process. The user needs to experiment with a number of network architectures; with larger networks, more computational cost in terms of training time is required. The objective of this letter is to present an optimization algorithm, comprising a multiobjective evolutionary algori...

متن کامل

A Memetic Framework for Cooperative Co-evolutionary Feedforward Neural Networks

Cooperative co-evolution has been a major approach in neuro-evolution. Memetic computing approaches employ local refinement to selected individuals in a population. The use of crossover-based local refinement has gained attention in memetic computing. This work proposes a cooperative co-evolutionary framework that utilises the strength of local refinement from memetic computing. It employs a cr...

متن کامل

Applying evolutionary optimization on the airfoil design

In this paper, lift and drag coefficients were numerically investigated using NUMECA software in a set of 4-digit NACA airfoils. Two metamodels based on the evolved group method of data handling (GMDH) type neural networks were then obtained for modeling both lift coefficient (CL) and drag coefficient (CD) with respect to the geometrical design parameters. After using such obtained polynomial n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001